Custom EPW files may be created by experienced users and imported using the "Import EPW File" option. There is also an option in FEDS version 8 that allows users to view and alter the weather data (e.g., drybulb temperature, relative humidity, atmospheric pressure, and sky clearness). This is presently intended to allow users to make weather adjustments to be used when calibrating a model to conditions for a specific base year. Contact FEDS support for more information.
Yes. FEDS now provides an option to import additional weather station data. An "Import EPW Weather File" feature enables users to access the growing number of weather station data representing many locations globally, as well as more recent records of typical climate data, and even data covering specific time periods or energy modeling scenarios. All data must be in standard EPW file format. Refer to the FEDS User’s Guide for more information.
Yes. All motors in the FEDS retrofit database meet current applicable EPAct and EISA efficiency standards that vary depending on parameters, such as motor horsepower, enclosure type, and speed.
The inputs may be accessed within the operational and control technologies section of the ventilation inputs screen. A number of technology and control parameters are available for each. A two-position or continuously modulated damper is required for some of these options.
The air leakage into a building is determined from the inferred or user-specified infiltration rate. The infiltration rate is the amount of outside air entering the building during periods when the ventilation system is either not operating or not supplying outside air (i.e., times when building is not under a positive pressure).
While FEDS models motor energy use, demand, and interactions with the HVAC system quite well, it is not a substitute for the MotorMaster+ software. MotorMaster+ contains extensive motor management and analysis capabilities that are found in no other software program. FEDS recommends general categories and performance levels of motors based on what is currently available, but does not specify particular manufacturers or special features. It is recommended that results of motor analyses from FEDS be used in MotorMaster+ to further refine and specify motor purchase requirements.
For example, the effect of the affinity laws on fan motors can have a significant impact in degrading the efficiency of an energy-efficient motor if it has less slip than the original motor. While it is true that many energy-efficient motors run faster than their standard efficiency counterparts, there are typically energy-efficient motors available with a full-load rpm equivalent to that of the motor it is replacing. FEDS does not account for the effect of speed on energy consumption in centrifugal loads, but assumes the user can find a motor with an equivalent slip as their current motor. MotorMaster+ is an invaluable tool to help users assess the impact of speed on energy consumption and finding the right motor for a given application.
Choose a weather station that most closely represents the weather at your location. Most times it will be a city in the same state as you, but can be in a neighboring state, or in some instances in another region altogether. When specifying the zip code of the site or building(s), FEDS will recommend a weather station that offers the most similar weather to your location.
The utilization factor represents the percentage of time during a particular period that the motor is operating. The load factor indicates the typical operating output of the motor as a percentage of rated output. For example, a 10-horsepower motor driving a 6-horsepower load and operating 50% of the time would have a load factor of 60% and a combined utilization/load factor of 30%.
FEDS allows the user to specify this information separately for occupied and unoccupied hours, either constant over the year, or varying from month to month. FEDS uses these values to calculate the hours of operation, and hence the consumption, and demand implications of each motor record. FEDS also calculates the heat output of the motors and its impact on the HVAC system.
Many motors in use today are oversized for the load they are driving, and some are grossly oversized. In such situations, the motor is driving a load equal to only a fraction of its rated capacity, and if too low the operating efficiency of the motor may suffer. Most importantly, when it's time to replace the motor, purchasing a motor with far excess capacity for its load will cost much more than a properly sized motor. Why spend more than necessary for the same (or even worse) level of service? FEDS understands t many motors may be over- (or under-) sized and allows the user to specify the required capacity of a motor, if known. FEDS will use the required capacity in order to select a replacement motor of the proper size and base its performance and cost calculations accordingly.
The ventilation end use inputs screen contains very basic information on the ventilation motors (total capacity and efficiency). The fan motors button simply enables a user to specify more detailed motor parameters by accessing the underlying fan motor inputs screen. From here, information, such as speed, enclosure type, voltage, vintage, and number of motors can be specified. It is important to realize that if any of this information has been entered, the fan motor inputs on the main ventilation screen will be inaccessible without first deleting the more detailed inputs.
FEDS now offers 1.116 weather station data locations, primarily from a TMY3 and CWEC sources. From this data it derives such information as heating and cooling design day conditions, hourly temperature, clearness, and humidity profiles for a typical meteorological year. See Appendix D of the FEDS User's Guide for more information.
Motor inference data and an extensive list of replacement motors (including performance and cost data) have been compiled from the MotorMaster+ software's extensive database of three-phase motors. MotorMaster+ was developed under the U.S. Department of Energy's Motor Challenge Program by the Washington State University Cooperative Extension Energy Program.