Normal/typical plug loads are accounted for (inferred) automatically within FEDS. These values can be viewed and/or changed from the miscellaneous equipment inputs in maximum detail display. The data is based on major end-use load surveys for typical plug load levels and accounts for the typical levels of equipment loads in a given use-area type. For example, for an office building this will account for typical levels of things, such as computers, printers, copiers, clocks, vending machines, coffee makers, and kitchenette equipment.
On the *.txs report, the electricity dollar values listed under the "Annual Installation Energy Use by Fuel Type" and "Annual Energy Use by Building Set and Fuel Type" pages include both energy and demand charges. To determine how much of that total cost is attributable to the energy vs. demand, the demand component (reported on the following page) may be subtracted from this total value.
Emissions factors are used and relate a quantity of pollutant emitted (e.g., tons of CO2) per unit of fuel burned. There are factors for each of the six pollutant types corresponding to each main fuel type. To estimate emissions, FEDS multiplies the consumption value for each fuel type by the appropriate emission factor. The emissions factors for certain fuel types, (for example electricity) can vary significantly depending on factors, such as plant type (coal, gas, nuclear, hydropower) and source fuel composition (e.g., sulfur content) such that state average values are applied based on the typical generation resource mix supplying that state.
Generally, it is best to specify the original purpose of the building as the building type, and then modify the use-area type to reflect its current use. Select building type = "Education", use-area type = "Office." The building's construction characteristics are inferred based on building type, while usage parameters (including occupancy, lighting and equipment use, and hot water demand) are based on the use-area type.
There is effectively no limit to the number of building sets allowed in a single case if there is enough hard drive space. Currently, each building set occupies approximately 4.3 megabytes of space across all file types. Given adequate storage space, FEDS can be—and has been—used to model an entire community, city, or utility service area.
There is no real limit to the number of buildings that can be modeled in a building set. However, building sets are designed to model buildings that share similar characteristics. The more similar buildings are within a given building set, the more accurate the results will be.
Use the building type or use-area designation that best fits regardless of which list it is on. The building set classes were grouped this way to aid in the selection of common types, but either list may be selected.
Attractive NPVs, payback periods, and SIRs typically fall within certain ranges, which should always be positive. However, negative values are possible in a couple of instances and do not necessarily indicate an error. The first possibility is that the project is recommended for a technology or building component you identified as "replacement required". As such, FEDS will recommend the most cost-effective replacement option, but not require that it be cost effective. So, while it may be the best replacement option, it may exhibit seemingly nonsensical economic figures of merit. Similarly, if a building retrofit occurs due to central plant or thermal loop abandonment, it may also exhibit negative savings criteria. That simply means that the retrofit (e.g., replacing central steam service with an in-building boiler) was not cost effective when looking just at the building energy use and costs. But the value of abandoning the central plant and/or distribution loop (due to the accompanying reductions in thermal losses and O&M costs) provided a net positive gain when added to the negative savings at the building level. Thus, at the site level, taking the central plant and thermal loop savings into account, the net benefit is positive—but purely from the building perspective (reflected in the TXD and CSV reports) the change from steam to dedicated boiler was not cost effective. Reviewing the central plant and thermal loops section of the TXS report and looking for a positive abandonment value will provide additional detail on just how much of a net positive gain accrues do the abandoning the plant and/or loop.
The index code in following the existing technology description for a heating or cooling technology represents the technology record number. For example,{H2} indicates a heating technology is actually heating record #2 (as input in the user interface). This information can be valuable when dealing with heat/cool pairs with several heating and cooling records in a single building set.
FEDS allows a negative value for percentage of heat to the conditioned space. For example, if the equipment has a COP of 2.0 and operates with an exterior condenser, then -200 should be entered for this value and the capacity should be half the actual rated capacity. (This will result in heating an amount equivalent to 200% of the unit's consumption as being rejected outside.)
Section 432 of the Energy Independence and Security Act of 2007 (EISA 432) requires U.S. federal agencies to perform energy and water evaluations of their covered facilities on a recurring basis and report their performance via the Compliance Tracking System (CTS). The FEDS CTS report is provided to help agencies compile and format results from their FEDS analyses to facilitate this reporting requirement. Measures identified with buildings modeled in FEDS are categorized and summarized into the CTS Evaluation Upload Template (in an Excel spreadsheet format).
The Energy Resilience and Conservation Investment Program (ERCIP) report (*.ecp, otherwise known as the DD 1391) is a special form required by certain U.S. Department of Defense agencies in order to submit projects for ERCIP funding. The ERCIP report is designed to facilitate the form preparation and submittal process.
The [Heating/Cooling] end use designation is used for existing heat pumps or heat/cool pairs. Because such technologies provide both heating and cooling, two rows are needed to describe them on the *.csv report. [HEATING/Cooling] indicates that the data on that row pertain to the heating technology (and overall economic impacts) while [Heating/COOLING] indicates that the data describes the cooling portion of the equipment (and no overall energy and economic data are shown).
The typical FEDS user will not have detailed information available regarding plug load levels in order to adequately model them and will need to rely on the inferred values. However, miscellaneous equipment records may be modified or added if a load is unusual or atypical of the use-area type, or has an extremely large load (or one that sees extensive use) that is above and beyond what would be considered typical. Similarly, a user may want to reduce the capacity density for some areas deemed to have a lower load density than typical for that type of space, or even delete entire records when there is no equipment in use of a given type.
For heat/cool pairs (separate heating and cooling technologies), information may be listed for both retrofits to new, more efficient equipment and to a heat pump. In some cases, it may be cost effective to replace the heating equipment (or cooling only, or both) with a newer unit of similar type, as well as replace both heat and cool simultaneously with a heat pump system. All cost-effective options will appear on the *.csv report. The best option can be determined by comparing the sum of the individual heat and cool annualized total life-cycle costing savings with that of the combined heat/cool system (i.e., heat pump).
The installed capital cost listed at the very bottom of the *.txd report represents the actual total cost including materials, labor, taxes, and overhead. It is the actual cost that would be paid to complete a project. The installed cost value listed under the life-cycle costs savings section displays both the present and annualized values of the installed cost as used in the life-cycle cost analysis. The present value of the installed cost may be less than the installed capital cost if the study period for the analysis is less than the life of the new equipment. This can occur when the remaining life of the existing technology is less than the life of the retrofit technology. In this case, the cost of the retrofit technology is annualized over its full rated life, but only the annualized costs occurring during the remaining life of the existing equipment is discounted back to the analysis year and used for a fair cost/benefit comparison.