Yes. All motors in the FEDS retrofit database meet current applicable EPAct and EISA efficiency standards that vary depending on parameters, such as motor horsepower, enclosure type, and speed.
During a month that has been identified as seasonally unoccupied (also referred to as non-operating), FEDS assumes zero occupancy, all lights are off (except exit signs), and the cooling system is shut down. Heating is operated at a reduced level generally for the purpose of preventing the pipes from freezing (temperature kept at low setpoint specified by the unoccupied season thermostat setting). General plug loads are assumed to be non-operational, as are most motors (although this may be overridden by specifying monthly motor load factors).
Unoccupied hours or day types of occupied months are those periods during which there is reduced occupancy of the building. These are referred to as low occupancy periods in FEDS. For a typical commercial facility this might occur during the night and on weekends. A small number of occupants might be present (though less than during normal operating hours), and all energy systems remain active although they may operate at reduced levels. The operation of HVAC, lighting, plug loads, and motors are all controlled by inputs such as thermostat setpoints (enabling temperature setback), ventilation control mode, and utilization/load factors.
Full 24-hour occupancy can be specified for any day type by entering the same start and end hours (except 0 and 2400). For unoccupied day types enter 0 for both start and end times (or leave them blank). Note: if you do not specify occupancy hours, they will remain blank and FEDS will model the buildings as though they are unoccupied (reduced occupancy). Shortcut buttons are available on the standard occupancy inputs screen to make specifying continuously occupied and unoccupied day types easier.
The inputs may be accessed within the operational and control technologies section of the ventilation inputs screen. A number of technology and control parameters are available for each. A two-position or continuously modulated damper is required for some of these options.
The air leakage into a building is determined from the inferred or user-specified infiltration rate. The infiltration rate is the amount of outside air entering the building during periods when the ventilation system is either not operating or not supplying outside air (i.e., times when building is not under a positive pressure).
While FEDS models motor energy use, demand, and interactions with the HVAC system quite well, it is not a substitute for the MotorMaster+ software. MotorMaster+ contains extensive motor management and analysis capabilities that are found in no other software program. FEDS recommends general categories and performance levels of motors based on what is currently available, but does not specify particular manufacturers or special features. It is recommended that results of motor analyses from FEDS be used in MotorMaster+ to further refine and specify motor purchase requirements.
For example, the effect of the affinity laws on fan motors can have a significant impact in degrading the efficiency of an energy-efficient motor if it has less slip than the original motor. While it is true that many energy-efficient motors run faster than their standard efficiency counterparts, there are typically energy-efficient motors available with a full-load rpm equivalent to that of the motor it is replacing. FEDS does not account for the effect of speed on energy consumption in centrifugal loads, but assumes the user can find a motor with an equivalent slip as their current motor. MotorMaster+ is an invaluable tool to help users assess the impact of speed on energy consumption and finding the right motor for a given application.
Variable occupancy is an improved approach to the seasonal occupancy option which allows users to specify that certain months are non-operating (e.g., schools may be shut down over summer break). Variable occupancy also offers greater flexibility by allowing users to specify the percent of days within specific months which follow the general occupancy and operation schedule defined in the standard occupancy inputs. One hundred percent indicates the building or use area operates all days of that type during the month according the standard schedule. Zero percent indicates the building (use area) is either non-operating (shut down) or in a low occupancy state (occupied at the low occupancy and equipment use level) for all days of that type during the month. For any value between 0% and 100%, FEDS will multiply that value by the actual number of days of that type in the month and model the resulting number of days (rounded to the nearest whole day) as operating according to the standard schedule. The remainder of the days of that type in the month will be deemed either non-operating or at low occupancy (depending on the selection of non-operating period status type). As a convention, FEDS will model the first X days in the month as occupied and operating to the standard schedule, and the remaining days of that type in the month as non-operating or at low occupancy. The variable occupancy capability provides significant modeling flexibility and is particularly useful in modeling occupancy and building operation that varies within the course of a month, such as for National Guard or Reserve buildings that may only be heavily occupied on certain weekends through much of the year.
Another option for even greater control over building and use-area operation and occupancy (for each hour of the year) is also available. Contact FEDS Support for more information if interested in using this approach.
The utilization factor represents the percentage of time during a particular period that the motor is operating. The load factor indicates the typical operating output of the motor as a percentage of rated output. For example, a 10-horsepower motor driving a 6-horsepower load and operating 50% of the time would have a load factor of 60% and a combined utilization/load factor of 30%.
FEDS allows the user to specify this information separately for occupied and unoccupied hours, either constant over the year, or varying from month to month. FEDS uses these values to calculate the hours of operation, and hence the consumption, and demand implications of each motor record. FEDS also calculates the heat output of the motors and its impact on the HVAC system.
Many motors in use today are oversized for the load they are driving, and some are grossly oversized. In such situations, the motor is driving a load equal to only a fraction of its rated capacity, and if too low the operating efficiency of the motor may suffer. Most importantly, when it's time to replace the motor, purchasing a motor with far excess capacity for its load will cost much more than a properly sized motor. Why spend more than necessary for the same (or even worse) level of service? FEDS understands t many motors may be over- (or under-) sized and allows the user to specify the required capacity of a motor, if known. FEDS will use the required capacity in order to select a replacement motor of the proper size and base its performance and cost calculations accordingly.
The ventilation end use inputs screen contains very basic information on the ventilation motors (total capacity and efficiency). The fan motors button simply enables a user to specify more detailed motor parameters by accessing the underlying fan motor inputs screen. From here, information, such as speed, enclosure type, voltage, vintage, and number of motors can be specified. It is important to realize that if any of this information has been entered, the fan motor inputs on the main ventilation screen will be inaccessible without first deleting the more detailed inputs.
Motor inference data and an extensive list of replacement motors (including performance and cost data) have been compiled from the MotorMaster+ software's extensive database of three-phase motors. MotorMaster+ was developed under the U.S. Department of Energy's Motor Challenge Program by the Washington State University Cooperative Extension Energy Program.
No. All occupancy hours must be specified by the user. Failing to do so will indicate to the model that the building is operating in the unoccupied mode each day during the week.