FEDS was originally designed to model buildings with single, homogeneous heating and cooling technologies within each individual building. The portion of building set served inputs are available to specify whole buildings within a building set that are served by a given technology. If your building has more than one type of heating or cooling technology, there are a couple of options. If the majority of service is provided by one system, users might simply model that one as if it were the only system serving the building. If the occupants use portable space heaters, users could account for the energy consumed and heating service provided by representing them as a miscellaneous equipment record. If, on the other hand, one system does not dominate, it would be best to model the building as a pair of linked buildings, with one technology serving each portion. Or, if a major renovation is being contemplated, users might wish to model the building once as if it were served by one technology, and once by the other. Optimizing each case separately, the results will provide insights into which system type would be best for the building.
An option is also available that makes it possible to model multiple heating or cooling technologies serving the same building(s). To enable this feature, select the percentage of each building served option from the heating or cooling end use inputs. When this option is specified, FEDS will model the defined HVAC technologies as serving the specified portion served of each building in the building set.
If the boiler serves only one building, select single building boiler as the equipment type and the fuel type that fires the boiler (natural gas, distillate oil, etc.). If the steam is piped in from a central boiler plant or purchased from offsite, select central steam as the fuel type and specify the equipment type as either a radiator, fan coil, or air handling unit using central steam or hot water (in-building equipment is a heat exchanger). For steam purchased from an off-site supplier, input a price for purchased central steam in the non-electric energy price inputs. For self-generated steam, create a central plant record, associated conversion equipment, and thermal loops within the central plant and thermal loops inputs.
The number of heat or cooling equipment should be specified. For boilers or chillers, enter the number of boilers or chillers and not the number of air handling units or fan coil units. Similarly, for furnaces, packaged cooling units, and heat pumps specify the number of those devices. If the building is served by a fuel generated at a central plant (not within the building), specify the number of heat exchangers that transfers heat from the central distribution loop to the building loop.
This is an error message that comes up when there are incompatible heating or cooling systems defined in a building set. This can occur when one building is modeled with linked heating (a heating system requiring a fan to deliver the heat; e.g., furnace, fan coil, or AHU) with one served by an unlinked heating system (no fan required ; e.g., radiator or baseboard system) together in the same building set. The situation can be remedied by separating the buildings into distinct building sets. For more information about allowable HVAC combinations, refer to Appendix I of the FEDS User's Guide.
FEDS project costing algorithms account for any materials, taxes, and labor costs applicable to a given retrofit measure. Additionally, 15% contractor overhead, 10% design cost, and 6% site level supervisory, inspection and overhead factors are applied, along with any multipliers specified on the regional costs screen under the financial options. Note that many of the cost factors reflect real regional variation, including labor rates, materials cost multipliers, and sales tax rates—with differentiation driven by the specified zip code. Each of these parameters are also able to be modified by the user, if appropriate.
The non-annual maintenance cost is used by FEDS to account for costs recurring on a non-annual basis, such as incremental equipment replacements and replacing failed lamps and ballasts. For example, the present value of the non-annual maintenance cost for lighting represents the present value of the total cost (including materials and labor) to replace the burned-out lamps and ballasts of a particular lighting technology over the course of the study period (generally 25 years).
FEDS employs the same standard life-cycle costing methodology and algorithms as the building life-cycle costing computer program developed by the National Institute of Standards and Technology.
A dual-fuel heat pump is an electric air-source heat pump that uses another fuel source (natural gas, LPG, oil) for the auxiliary or backup heat (instead of electric resistance coils). It can be accomplished within a single integrated unit or pieced together by mating a standard air source heat pump with a furnace via a controller. The controller determines which unit to operate based on outside temperature, relative efficiencies, and cost of each fuel.
The heat/cool pair is a concept added to FEDS with the advent of considering heat pumps as replacements to conventional heating and cooling technologies. A heat/cool pair identifies to the model which heating and cooling technologies jointly serve a particular building or group of buildings in the building set and may be considered for joint replacement by a heat pump technology. In order to consider heat pumps or any other integrated heating and cooling technology as replacements for existing heating and cooling technologies, the heat/cool pairs must be defined. Baseline heat pump records are automatically paired (as long as their fuel type, equipment type, number of units, and vintages match) upon updating inferences, while all non-heat pump technologies must be paired manually.
A linked heating and cooling system is when the heating and/or cooling coil is integrated with the ventilation system, employing air as the distribution fluid (air handler, fan coil, packaged unit, furnace, etc.).
An unlinked heating and cooling system is when the ventilation system (if present) is separate from the heating coil, and heat is provided without requiring fan-powered air delivery. Unlinked heating technologies include radiators, baseboard electric, or infrared heaters.
Currently, FEDS assumes that all cooling is linked, with the exception of evaporative coolers, which are assigned a separate, special ventilation scenario. For more detailed information see Section 4.4.2 of the FEDS User's Guide.
The crossover temperature is the outdoor air temperature at which a dual-fuel heat pump switches operation from the heat pump to the backup technology. This is typically the control methodology for these systems and can be entered or determined by FEDS. FEDS will calculate the optimal crossover temperature based on electric and backup fuel prices, heat pump performance and capacity vs. temperature, and furnace efficiency.
A separate heat/cool pair is a pair of heating and cooling technologies that are completely separate units, yet serve the same area/building (e.g., a furnace and separate package unit, or a boiler and a chiller). An integrated heat/cool pair is one in which the heating and cooling sources are packaged together in the same unit (e.g., a packaged cooling unit with integral gas burner or 'gas-pack' system). Identifying a heat/cool pair as integrated tells FEDS that individual heating and cooling replacements cannot be considered as a direct replacement.
Similar to the separate vs. integrated discussion for heat/cool pairs, a separate backup source for a dual-fuel heat pump indicates there is a separate furnace that is connected to the heat pump via a controller. A dual-fuel heat pump with integrated backup is a heat pump unit with a built-in gas or LPG auxiliary heat source. For modeling purposes, the only real difference is that FEDS will consider replacing the individual components (heat pump or backup furnace) of a separate dual-fuel heat pump in addition to replacing the entire system.
The discount rate is the factor used to adjust (discount) future sums of money into the equivalent current year dollar amount. It can also be thought of as the interest rate or hurdle rate (i.e., the rate of return required by a company for it to undertake a project). FEDS uses the real discount rate, which has the effect of inflation removed. FEDS provides the current Federal real discount rate as the default, but the user may enter any discount rate appropriate for their projects. Energy service companies performing shared energy savings contracts typically require real rates of return in the neighborhood of 10 to 20%.
The global cost multiplier is an overall cost multiplier applied to the total project cost (including all materials, labor, taxes, overhead). It can be used to adjust all of the total project costs used in FEDS economic calculations. This could be used for such purposes as to account for special cost-impacting requirements of working at a facility with stringent security requirements or health and safety risks, or to assess the impact of varying costs on project economics.
On the bottom right of some input screens (windows, lighting, heating, cooling, hot water, and motors) is a check box labeled "replacement required". The purpose of this selection is to tell FEDS that this particular building component or technology must be replaced. Whether it has failed (for example, windows are broken, or the furnace has stopped working), or a replacement or upgrade is planned, checking this box will force a replacement to be evaluated and selected when the FEDS optimization analysis is run. If a replacement option is cost effective, FEDS will work as normal; however, if one is not, FEDS will still provide the recommendation even though it may not be otherwise cost effective. FEDS will still report the most cost-effective option and all of the standard details to help users make informed decisions. This option is also known as replace on failure economics.
Thermostat dead band for heating represents the range of temperatures below the set point at which the thermostat does not call for heat. For example, at a 70-degree set point and a 2-degree dead band, the temperature will drop to 68 degrees before heating is activated, raising the temperature back to 70. It may also be referred to as the throttling range or differential. It operates similarly for cooling, allowing the temperature to rise a number of degrees equal to the dead band before cooling is activated.
FEDS project costs are based on industry averages and may not match the exact costs you will be charged. The end-use and technology multipliers are intended to enable the user to adjust for these discrepancies so that the costs used in the FEDS analyses are as close to actual as possible. The recommended approach would be to first enter any known cost data (such as, labor rates, tax rate, discount rate, etc.), and then run FEDS, generate reports, and see what types of projects are coming up. Compare the project costs to actual known costs or bids for similar projects of that type. If any of the technology costs are grossly high or low, adjust them appropriately with a technology multiplier. Rerun FEDS to see if the same technology is being selected, and make sure that the costs more closely represent what the anticipated cost to complete the project. Because of the complex nature of the FEDS cost data, this iterative multiplier approach is the best way for users to modify project costs.