No. FEDS infers parameters based on the most likely current condition of a building and its equipment. Inferences for an 1820 vintage building will reflect the typical improvements and upgrades that have occurred over time.
If the building is newer than the rated life of the equipment in question, then the remaining life is equal to the difference of rated life and building age. If the building is older than the equipment's rated life, FEDS assumes that on average, equipment will be halfway through their life (but users can override this assumption and specify actual equipment vintage). Rated lives vary by equipment technology. Some examples of rated lives used in FEDS are:
envelope components (windows, insulation, etc.) – 40 years
lights – typically 25 years (Although the cost of replacing lamps and ballasts is figured into the analysis based on specific replacement intervals and hours of operation)
boilers – 40 years
furnaces – 20 years
chillers – 20 years
package AC units – 15 years
heat pumps – Air Source/15 years, Ground-Coupled/20 years
motors – 15 years
hot water heaters – electric, 12 years; gas, 10 years; distributed heat pump, 12 years; central heat pump, 15 years
FEDS contains a built-in database of building survey data and is able to infer a number of building parameters based on the small set of required inputs provided by the user. For example, FEDS uses information such as building type, location, floor area, and vintage to determine the most likely construction type and geometry. It uses similar information along with heating fuel type and cooling equipment, to determine the most likely heating technology and ventilation system parameters for a building. All inferences enable a user to model buildings without having intimate knowledge of the detailed engineering parameters. The resulting building prototype parameter values are statistically the most likely values based on the limited set of information provided. Of course, all inferred data may be easily overwritten by simply entering (locking) a value in the user interface screens.
FEDS draws upon a number of sources to determine inferable parameter values. Major sources include national building energy consumption surveys such as the Commercial Buildings Energy Consumption, Residential Energy Consumption Survey, large end-use studies such as the End-Use Load and Consumer Assessment Program, ASHRAE handbooks, building and equipment codes and standards, and manufacturers' data and extensive building audit and evaluation experience.
A locked value, in terms of FEDS inputs, is one that the user has entered for an inferable parameter. This indicates to the model that this is a user-entered value and should not be updated (inferred). Clicking on the lock symbol can also lock a currently inferred value. When a value is locked, the lock icon will appear as a latched or closed lock. To unlock a value, simply click the icon again, changing it to an open or unlatched lock. This value will now be inferred the next time inferences are run.
FEDS project costing algorithms account for any materials, taxes, and labor costs applicable to a given retrofit measure. Additionally, 15% contractor overhead, 10% design cost, and 6% site level supervisory, inspection and overhead factors are applied, along with any multipliers specified on the regional costs screen under the financial options. Note that many of the cost factors reflect real regional variation, including labor rates, materials cost multipliers, and sales tax rates—with differentiation driven by the specified zip code. Each of these parameters are also able to be modified by the user, if appropriate.
The non-annual maintenance cost is used by FEDS to account for costs recurring on a non-annual basis, such as incremental equipment replacements and replacing failed lamps and ballasts. For example, the present value of the non-annual maintenance cost for lighting represents the present value of the total cost (including materials and labor) to replace the burned-out lamps and ballasts of a particular lighting technology over the course of the study period (generally 25 years).
FEDS employs the same standard life-cycle costing methodology and algorithms as the building life-cycle costing computer program developed by the National Institute of Standards and Technology.
The discount rate is the factor used to adjust (discount) future sums of money into the equivalent current year dollar amount. It can also be thought of as the interest rate or hurdle rate (i.e., the rate of return required by a company for it to undertake a project). FEDS uses the real discount rate, which has the effect of inflation removed. FEDS provides the current Federal real discount rate as the default, but the user may enter any discount rate appropriate for their projects. Energy service companies performing shared energy savings contracts typically require real rates of return in the neighborhood of 10 to 20%.
The global cost multiplier is an overall cost multiplier applied to the total project cost (including all materials, labor, taxes, overhead). It can be used to adjust all of the total project costs used in FEDS economic calculations. This could be used for such purposes as to account for special cost-impacting requirements of working at a facility with stringent security requirements or health and safety risks, or to assess the impact of varying costs on project economics.
On the bottom right of some input screens (windows, lighting, heating, cooling, hot water, and motors) is a check box labeled "replacement required". The purpose of this selection is to tell FEDS that this particular building component or technology must be replaced. Whether it has failed (for example, windows are broken, or the furnace has stopped working), or a replacement or upgrade is planned, checking this box will force a replacement to be evaluated and selected when the FEDS optimization analysis is run. If a replacement option is cost effective, FEDS will work as normal; however, if one is not, FEDS will still provide the recommendation even though it may not be otherwise cost effective. FEDS will still report the most cost-effective option and all of the standard details to help users make informed decisions. This option is also known as replace on failure economics.
FEDS project costs are based on industry averages and may not match the exact costs you will be charged. The end-use and technology multipliers are intended to enable the user to adjust for these discrepancies so that the costs used in the FEDS analyses are as close to actual as possible. The recommended approach would be to first enter any known cost data (such as, labor rates, tax rate, discount rate, etc.), and then run FEDS, generate reports, and see what types of projects are coming up. Compare the project costs to actual known costs or bids for similar projects of that type. If any of the technology costs are grossly high or low, adjust them appropriately with a technology multiplier. Rerun FEDS to see if the same technology is being selected, and make sure that the costs more closely represent what the anticipated cost to complete the project. Because of the complex nature of the FEDS cost data, this iterative multiplier approach is the best way for users to modify project costs.