Yes. FEDS now models and evaluates lighting controls, including occupancy sensors. To model existing lighting controls, the user must select the appropriate "yes" response to the "Existing lighting controls?" input and review the existing utilization factors. To infer reasonable utilization factors for the controlled lighting, specify the appropriate space type for the space where the lights exist.
FEDS will also automatically evaluate the savings potential and cost-effectiveness of lighting controls where they do not currently exist. In this scenario, select "no–evaluate occupancy sensor" and identify the most applicable space type. In this case, the "existing" utilization factors identify the portion of time that the lights are currently on, while the "with controls" utilization factors will be used by FEDS to model the impact of the occupancy sensor controls. The "number of sensors required" is used by the cost model to identify how many sensors need to be installed to control the current lighting.
Weekday, Saturday, and Sunday hot water consumption values are determined using typical usage rates for a given use-area type, along with the number of occupants and occupancy schedule for each day type. Values are also adjusted according to such parameters as the presence or absence of showers and high efficiency fixtures.
Each lamp and ballast modeled within FEDS has a rated life (specified in hours) associated with it. Actual replacement intervals are calculated within the model based on the light's modeled operating hours (based on utilization factors and occupancy schedules) and rated life of each component. When a lamp or ballast fails, FEDS accounts for the cost to replace the component by figuring both materials and labor requirements. These costs are tallied over the economic study period and reported as the non-annual maintenance cost. FEDS uses the non-annual maintenance cost along with energy and capital costs in determining which fixture can best provide the required level of service at the lowest life-cycle cost.
During a month that has been identified as seasonally unoccupied (also referred to as non-operating), FEDS assumes zero occupancy, all lights are off (except exit signs), and the cooling system is shut down. Heating is operated at a reduced level generally for the purpose of preventing the pipes from freezing (temperature kept at low setpoint specified by the unoccupied season thermostat setting). General plug loads are assumed to be non-operational, as are most motors (although this may be overridden by specifying monthly motor load factors).
Unoccupied hours or day types of occupied months are those periods during which there is reduced occupancy of the building. These are referred to as low occupancy periods in FEDS. For a typical commercial facility this might occur during the night and on weekends. A small number of occupants might be present (though less than during normal operating hours), and all energy systems remain active although they may operate at reduced levels. The operation of HVAC, lighting, plug loads, and motors are all controlled by inputs such as thermostat setpoints (enabling temperature setback), ventilation control mode, and utilization/load factors.
Exterior lighting, such as security or parking lot lights can be included in FEDS by selecting the exterior fixture location. This will set the heat to space to 0 and alter the calculation of utilization factors appropriate for typical nighttime operation.
Full 24-hour occupancy can be specified for any day type by entering the same start and end hours (except 0 and 2400). For unoccupied day types enter 0 for both start and end times (or leave them blank). Note: if you do not specify occupancy hours, they will remain blank and FEDS will model the buildings as though they are unoccupied (reduced occupancy). Shortcut buttons are available on the standard occupancy inputs screen to make specifying continuously occupied and unoccupied day types easier.
FEDS assumes circulating (or loop) hot water systems serve entire buildings. Specifying a loop system for use-area 1 automatically identifies that it also serves use-area 2. Loop systems that only serve use-area 2 cannot be modeled, and the loop selection box is unnecessary and is disabled.
Refer to Appendix G of the FEDS User's Guide. Ex: FL 2x4 4F40T12 STD2 = a 2-foot by 4-foot fluorescent fixture, with four 40 watt T12 (1.5 inch diameter) lamps, operated by two standard magnetic ballasts (designed to operate two lamps each).
Storage capacity for hot water is calculated using the building type and building's design occupancy. For distributed tank systems, values are rounded up to the next increment of typical tank capacity.
No. If a building (or use-area) has any hot water available users should specify 100% of it is served by hot water. As long as there is hot water available in a space, occupants will utilize it even if it is not immediately accessible. The purpose of having the portion served input is to allow the FEDS user to specify entire buildings (or use-areas) within a building set that do not have any hot water. For example, for a building set consisting of 10 buildings in which two of the buildings have no hot water service, they would enter that two buildings (or 20%) for the portion of buildings in this set that have no water heating.
The utilization factors for lighting represent the portion of time particular lights are on, on average, over the building set. They are expressed as a fraction of the maximum possible load (i.e., 100% of the lights are on 100% of the time) for a given time period. FEDS infers the occupied and unoccupied period utilization factors based on what is typical on average for the lighting technology and use-area type. FEDS typically assumes that some lights are on even during unoccupied times for security, safety, or cleaning staff, or simply because lights were left on. During seasonally unoccupied months and other periods defined as non-operating, utilization factors are set to 0 for all lighting records except for exit lights, which are assumed to operate constantly.
Variable occupancy is an improved approach to the seasonal occupancy option which allows users to specify that certain months are non-operating (e.g., schools may be shut down over summer break). Variable occupancy also offers greater flexibility by allowing users to specify the percent of days within specific months which follow the general occupancy and operation schedule defined in the standard occupancy inputs. One hundred percent indicates the building or use area operates all days of that type during the month according the standard schedule. Zero percent indicates the building (use area) is either non-operating (shut down) or in a low occupancy state (occupied at the low occupancy and equipment use level) for all days of that type during the month. For any value between 0% and 100%, FEDS will multiply that value by the actual number of days of that type in the month and model the resulting number of days (rounded to the nearest whole day) as operating according to the standard schedule. The remainder of the days of that type in the month will be deemed either non-operating or at low occupancy (depending on the selection of non-operating period status type). As a convention, FEDS will model the first X days in the month as occupied and operating to the standard schedule, and the remaining days of that type in the month as non-operating or at low occupancy. The variable occupancy capability provides significant modeling flexibility and is particularly useful in modeling occupancy and building operation that varies within the course of a month, such as for National Guard or Reserve buildings that may only be heavily occupied on certain weekends through much of the year.
Another option for even greater control over building and use-area operation and occupancy (for each hour of the year) is also available. Contact FEDS Support for more information if interested in using this approach.
The lighting use-area fixture density is the inferred fixtures per square foot and is based on typical lumen levels for different use-area types. It represents the average fixtures per square foot over the entire use-area (or building for single use-area buildings). Typically, the user will know the total number of fixtures in a use-area and can enter this and allow the software to calculate the fixtures per square foot.
For distributed tank systems, FEDS assumes commercial tanks are 80 gallons, while residential units are 50 gallons.
FEDS assumes loop (circulating) systems serve an entire building and, therefore, the number of tanks is inferred to be one for each building, regardless of the number of use areas present.
No. At this time FEDS considers only fixture per fixture replacements that provide similar light output. However, the energy impact of correcting an over/under lit condition could be analyzed comparing by two consecutive FEDS baseline runs (by running without optimization).
No. All occupancy hours must be specified by the user. Failing to do so will indicate to the model that the building is operating in the unoccupied mode each day during the week.