Yes. All motors in the FEDS retrofit database meet current applicable EPAct and EISA efficiency standards that vary depending on parameters, such as motor horsepower, enclosure type, and speed.
Yes. FEDS now models and evaluates lighting controls, including occupancy sensors. To model existing lighting controls, the user must select the appropriate "yes" response to the "Existing lighting controls?" input and review the existing utilization factors. To infer reasonable utilization factors for the controlled lighting, specify the appropriate space type for the space where the lights exist.
FEDS will also automatically evaluate the savings potential and cost-effectiveness of lighting controls where they do not currently exist. In this scenario, select "no–evaluate occupancy sensor" and identify the most applicable space type. In this case, the "existing" utilization factors identify the portion of time that the lights are currently on, while the "with controls" utilization factors will be used by FEDS to model the impact of the occupancy sensor controls. The "number of sensors required" is used by the cost model to identify how many sensors need to be installed to control the current lighting.
No. FEDS infers parameters based on the most likely current condition of a building and its equipment. Inferences for an 1820 vintage building will reflect the typical improvements and upgrades that have occurred over time.
Each lamp and ballast modeled within FEDS has a rated life (specified in hours) associated with it. Actual replacement intervals are calculated within the model based on the light's modeled operating hours (based on utilization factors and occupancy schedules) and rated life of each component. When a lamp or ballast fails, FEDS accounts for the cost to replace the component by figuring both materials and labor requirements. These costs are tallied over the economic study period and reported as the non-annual maintenance cost. FEDS uses the non-annual maintenance cost along with energy and capital costs in determining which fixture can best provide the required level of service at the lowest life-cycle cost.
Exterior lighting, such as security or parking lot lights can be included in FEDS by selecting the exterior fixture location. This will set the heat to space to 0 and alter the calculation of utilization factors appropriate for typical nighttime operation.
Refer to Appendix G of the FEDS User's Guide. Ex: FL 2x4 4F40T12 STD2 = a 2-foot by 4-foot fluorescent fixture, with four 40 watt T12 (1.5 inch diameter) lamps, operated by two standard magnetic ballasts (designed to operate two lamps each).
If the building is newer than the rated life of the equipment in question, then the remaining life is equal to the difference of rated life and building age. If the building is older than the equipment's rated life, FEDS assumes that on average, equipment will be halfway through their life (but users can override this assumption and specify actual equipment vintage). Rated lives vary by equipment technology. Some examples of rated lives used in FEDS are:
envelope components (windows, insulation, etc.) – 40 years
lights – typically 25 years (Although the cost of replacing lamps and ballasts is figured into the analysis based on specific replacement intervals and hours of operation)
boilers – 40 years
furnaces – 20 years
chillers – 20 years
package AC units – 15 years
heat pumps – Air Source/15 years, Ground-Coupled/20 years
motors – 15 years
hot water heaters – electric, 12 years; gas, 10 years; distributed heat pump, 12 years; central heat pump, 15 years
While FEDS models motor energy use, demand, and interactions with the HVAC system quite well, it is not a substitute for the MotorMaster+ software. MotorMaster+ contains extensive motor management and analysis capabilities that are found in no other software program. FEDS recommends general categories and performance levels of motors based on what is currently available, but does not specify particular manufacturers or special features. It is recommended that results of motor analyses from FEDS be used in MotorMaster+ to further refine and specify motor purchase requirements.
For example, the effect of the affinity laws on fan motors can have a significant impact in degrading the efficiency of an energy-efficient motor if it has less slip than the original motor. While it is true that many energy-efficient motors run faster than their standard efficiency counterparts, there are typically energy-efficient motors available with a full-load rpm equivalent to that of the motor it is replacing. FEDS does not account for the effect of speed on energy consumption in centrifugal loads, but assumes the user can find a motor with an equivalent slip as their current motor. MotorMaster+ is an invaluable tool to help users assess the impact of speed on energy consumption and finding the right motor for a given application.
FEDS contains a built-in database of building survey data and is able to infer a number of building parameters based on the small set of required inputs provided by the user. For example, FEDS uses information such as building type, location, floor area, and vintage to determine the most likely construction type and geometry. It uses similar information along with heating fuel type and cooling equipment, to determine the most likely heating technology and ventilation system parameters for a building. All inferences enable a user to model buildings without having intimate knowledge of the detailed engineering parameters. The resulting building prototype parameter values are statistically the most likely values based on the limited set of information provided. Of course, all inferred data may be easily overwritten by simply entering (locking) a value in the user interface screens.
FEDS draws upon a number of sources to determine inferable parameter values. Major sources include national building energy consumption surveys such as the Commercial Buildings Energy Consumption, Residential Energy Consumption Survey, large end-use studies such as the End-Use Load and Consumer Assessment Program, ASHRAE handbooks, building and equipment codes and standards, and manufacturers' data and extensive building audit and evaluation experience.
The utilization factors for lighting represent the portion of time particular lights are on, on average, over the building set. They are expressed as a fraction of the maximum possible load (i.e., 100% of the lights are on 100% of the time) for a given time period. FEDS infers the occupied and unoccupied period utilization factors based on what is typical on average for the lighting technology and use-area type. FEDS typically assumes that some lights are on even during unoccupied times for security, safety, or cleaning staff, or simply because lights were left on. During seasonally unoccupied months and other periods defined as non-operating, utilization factors are set to 0 for all lighting records except for exit lights, which are assumed to operate constantly.
A locked value, in terms of FEDS inputs, is one that the user has entered for an inferable parameter. This indicates to the model that this is a user-entered value and should not be updated (inferred). Clicking on the lock symbol can also lock a currently inferred value. When a value is locked, the lock icon will appear as a latched or closed lock. To unlock a value, simply click the icon again, changing it to an open or unlatched lock. This value will now be inferred the next time inferences are run.
The utilization factor represents the percentage of time during a particular period that the motor is operating. The load factor indicates the typical operating output of the motor as a percentage of rated output. For example, a 10-horsepower motor driving a 6-horsepower load and operating 50% of the time would have a load factor of 60% and a combined utilization/load factor of 30%.
FEDS allows the user to specify this information separately for occupied and unoccupied hours, either constant over the year, or varying from month to month. FEDS uses these values to calculate the hours of operation, and hence the consumption, and demand implications of each motor record. FEDS also calculates the heat output of the motors and its impact on the HVAC system.
Many motors in use today are oversized for the load they are driving, and some are grossly oversized. In such situations, the motor is driving a load equal to only a fraction of its rated capacity, and if too low the operating efficiency of the motor may suffer. Most importantly, when it's time to replace the motor, purchasing a motor with far excess capacity for its load will cost much more than a properly sized motor. Why spend more than necessary for the same (or even worse) level of service? FEDS understands t many motors may be over- (or under-) sized and allows the user to specify the required capacity of a motor, if known. FEDS will use the required capacity in order to select a replacement motor of the proper size and base its performance and cost calculations accordingly.
The lighting use-area fixture density is the inferred fixtures per square foot and is based on typical lumen levels for different use-area types. It represents the average fixtures per square foot over the entire use-area (or building for single use-area buildings). Typically, the user will know the total number of fixtures in a use-area and can enter this and allow the software to calculate the fixtures per square foot.
Motor inference data and an extensive list of replacement motors (including performance and cost data) have been compiled from the MotorMaster+ software's extensive database of three-phase motors. MotorMaster+ was developed under the U.S. Department of Energy's Motor Challenge Program by the Washington State University Cooperative Extension Energy Program.
No. At this time FEDS considers only fixture per fixture replacements that provide similar light output. However, the energy impact of correcting an over/under lit condition could be analyzed comparing by two consecutive FEDS baseline runs (by running without optimization).